Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.
نویسندگان
چکیده
Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.
منابع مشابه
Anomalous unrooted gene trees.
The coalescent and multispecies coalescent model rooted genealogies backward through time. Often, the direction of time is unknown in trees estimated from molecular sequences due to reversible mutation models, absence of an appropriate outgroup, and the absence of the molecular clock. In this article, probabilities of unrooted gene-tree topologies under the multispecies coalescent are considere...
متن کاملAlgorithms for MDC-Based Multi-Locus Phylogeny Inference: Beyond Rooted Binary Gene Trees on Single Alleles
One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene tree...
متن کاملAlgorithms for MDC-Based Multi-locus Phylogeny Inference
One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene tr...
متن کاملCoalescent-based species tree estimation: a stochastic Farris transform
The reconstruction of a species phylogeny from genomic data faces two significant hurdles: 1) the trees describing the evolution of each individual gene—i.e., the gene trees—may differ from the species phylogeny and 2) the molecular sequences corresponding to each gene often provide limited information about the gene trees themselves. In this paper we consider an approach to species tree recons...
متن کاملURec: a system for unrooted reconciliation
UNLABELLED URec is a software based on a concept of unrooted reconciliation. It can be used to reconcile a set of unrooted gene trees with a rooted species tree or a set of rooted species trees. Moreover, it computes detailed distribution of gene duplications and gene losses in a species tree. It can be used to infer optimal species phylogenies for a given set of gene trees. URec is implemented...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 62 6 شماره
صفحات -
تاریخ انتشار 2011